We introduce point affiliation into feature upsampling, a notion that describes the affiliation of each upsampled point to a semantic cluster formed by local decoder feature points with semantic similarity. By rethinking point affiliation, we present a generic formulation for generating upsampling kernels. The kernels encourage not only semantic smoothness but also boundary sharpness in the upsampled feature maps. Such properties are particularly useful for some dense prediction tasks such as semantic segmentation. The key idea of our formulation is to generate similarity-aware kernels by comparing the similarity between each encoder feature point and the spatially associated local region of decoder features. In this way, the encoder feature point can function as a cue to inform the semantic cluster of upsampled feature points. To embody the formulation, we further instantiate a lightweight upsampling operator, termed Similarity-Aware Point Affiliation (SAPA), and investigate its variants. SAPA invites consistent performance improvements on a number of dense prediction tasks, including semantic segmentation, object detection, depth estimation, and image matting. Code is available at: https://github.com/poppinace/sapa
翻译:我们将点属性引入特征抽样, 描述每个被抽取的点与由本地解码特征点和语义相似性组成的语义群的属性。 我们通过重新思考点属性, 提出了一个用于生成采集内核的通用配方。 内核不仅鼓励语义平滑, 也鼓励了高采样特征地图中的边界清晰性。 这些属性对于一些密集的预测任务特别有用, 如语义分解。 我们的配方的关键理念是通过比较每个编码特征点和与空间相关的解码器特征区域之间的相似性来产生相似的语义内核。 这样, 编码特征点可以起到提示作用, 向高采样特征点的语义组提供信息。 为了体现这种配方的配方, 我们进一步即刻一个轻量的加标注操作器, 被称为“ 语义中继点” (SAPA), 并调查其变式。 SAPA邀请在一系列密集的预测任务上持续地改进性能,, 包括可获取的磁段/ 目标 。