Algorithmic fairness seeks to identify and correct sources of bias in machine learning algorithms. Confoundingly, ensuring fairness often comes at the cost of accuracy. We provide formal tools in this work for reconciling this fundamental tension in algorithm fairness. Specifically, we put to use the concept of Pareto optimality from multi-objective optimization and seek the fairness-accuracy Pareto front of a neural network classifier. We demonstrate that many existing algorithmic fairness methods are performing the so-called linear scalarization scheme which has severe limitations in recovering Pareto optimal solutions. We instead apply the Chebyshev scalarization scheme which is provably superior theoretically and no more computationally burdensome at recovering Pareto optimal solutions compared to the linear scheme.


翻译:解析公平性的目的是找出和纠正机器学习算法中偏见的来源。 令人不安的是,确保公平往往以准确性为代价。 我们在此工作中提供了正式工具,以调和算法公平性这一根本紧张因素。 具体地说,我们从多目标优化中采用了Pareto最佳性的概念,并寻求神经网络分类师面前的公平- 准确性 Pareto。 我们证明,许多现有的算法公平性方法正在实行所谓的线性计算法,在恢复Pareto最佳解决方案方面有着严重的局限性。 相反,我们采用了Chebyshev 的算法化方案,该方案在理论上比线性方案在恢复Pareto最佳解决方案时具有明显的优越性,在计算上没有比线性方案更麻烦。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
已删除
将门创投
5+阅读 · 2019年4月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
已删除
将门创投
5+阅读 · 2019年4月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员