Algorithmic fairness seeks to identify and correct sources of bias in machine learning algorithms. Confoundingly, ensuring fairness often comes at the cost of accuracy. We provide formal tools in this work for reconciling this fundamental tension in algorithm fairness. Specifically, we put to use the concept of Pareto optimality from multi-objective optimization and seek the fairness-accuracy Pareto front of a neural network classifier. We demonstrate that many existing algorithmic fairness methods are performing the so-called linear scalarization scheme which has severe limitations in recovering Pareto optimal solutions. We instead apply the Chebyshev scalarization scheme which is provably superior theoretically and no more computationally burdensome at recovering Pareto optimal solutions compared to the linear scheme.
翻译:解析公平性的目的是找出和纠正机器学习算法中偏见的来源。 令人不安的是,确保公平往往以准确性为代价。 我们在此工作中提供了正式工具,以调和算法公平性这一根本紧张因素。 具体地说,我们从多目标优化中采用了Pareto最佳性的概念,并寻求神经网络分类师面前的公平- 准确性 Pareto。 我们证明,许多现有的算法公平性方法正在实行所谓的线性计算法,在恢复Pareto最佳解决方案方面有着严重的局限性。 相反,我们采用了Chebyshev 的算法化方案,该方案在理论上比线性方案在恢复Pareto最佳解决方案时具有明显的优越性,在计算上没有比线性方案更麻烦。