In this draft article, we consider the problem of achieving safe control of a dynamic system for which the safety index or (control barrier function (loosely)) has relative degree equal to two. We consider parameter affine nonlinear dynamic systems and assume that the parametric uncertainty is uniform and known a-priori or being updated online through an estimator/parameter adaptation law. Under this uncertainty, the usual CBF-QP safe control approach takes the form of a robust optimization problem. Both the right hand side and left hand side of the inequality constraints depend on the unknown parameter. With the given representation of uncertainty, the CBF-QP safe control ends up being a convex semi-infinite problem. Using two different philosophies, one based on weak duality and another based on the Lossless s-procedure, we arrive at identical SDP formulations of this robust CBF-QP problem. Thus we show that the problem of computing safe controls with known parametric uncertainty can be posed as a tractable convex problem and be solved online. (This is work in progress).
翻译:在本条草案中,我们考虑了安全指数或控制屏障功能(粗略)相对等于2的动态系统的安全控制问题。我们考虑了非线性动态系统参数,并假定参数不确定性是统一和已知的优先性的,或者通过估算/参数适应法在线更新。在这种不确定性下,通常的CBF-QP安全控制方法采取强力优化问题的形式。不平等制约的右手侧和左手侧都取决于未知参数。在给出不确定性的表述后,CBF-QP安全控制最终成为一个二次曲线半无穷问题。使用两种不同的哲学,一种基于薄弱的双重性,另一种基于无损失的双轨法,我们得出了这种强大的CBF-QP问题的相同的SDP配方。因此我们表明,计算安全控制时已知的参数不确定性问题可以作为一个可伸缩式的共解问题,并在线解决。(这是正在开展的工作)。