This paper considers safe control synthesis for dynamical systems with either probabilistic or worst-case uncertainty in both the dynamics model and the safety constraints. We formulate novel probabilistic and robust (worst-case) control Lyapunov function (CLF) and control barrier function (CBF) constraints that take into account the effect of uncertainty in either case. We show that either the probabilistic or the robust (worst-case) formulation leads to a second-order cone program (SOCP), which enables efficient safe and stable control synthesis. We evaluate our approach in PyBullet simulations of an autonomous robot navigating in unknown environments and compare the performance with a baseline CLF-CBF quadratic programming approach.
翻译:本文件审议了动态模型和安全限制中具有概率性或最坏情况的不确定性的动态系统的安全控制合成。我们制定了新的概率性和强势(弱态)控制 Lyapunov 函数和控制屏障功能(CBF)的制约,同时考虑到任一情况下不确定性的影响。我们表明,概率性或强性(弱态)配方导致产生二阶锥形程序,从而能够高效、安全和稳定地进行控制合成。我们评估了在未知环境中自主驾驶机器人的PyBullet模拟方法,并将性能与CLF-CBF的基底二次编程方法进行比较。