The method of fundamental solutions (MFS), also known as the method of auxiliary sources (MAS), is a well-known computational method for the solution of boundary-value problems. The final solution ("MAS solution") is obtained once we have found the amplitudes of $N$ auxiliary "MAS sources." Past studies have demonstrated that it is possible for the MAS solution to converge to the true solution even when the $N$ auxiliary sources diverge and oscillate. The present paper extends the past studies by demonstrating this possibility within the context of Laplace's equation with Neumann boundary conditions. One can thus obtain the correct solution from sources that, when $N$ is large, must be considered unphysical. We carefully explain the underlying reasons for the unphysical results, distinguish from other difficulties that might concurrently arise, and point to significant differences with time-dependent problems that were studied in the past.
翻译:暂无翻译