This paper presents a variational representation of the Bayes' law using optimal transportation theory. The variational representation is in terms of the optimal transportation between the joint distribution of the (state, observation) and their independent coupling. By imposing certain structure on the transport map, the solution to the variational problem is used to construct a Brenier-type map that transports the prior distribution to the posterior distribution for any value of the observation signal. The new formulation is used to derive the optimal transport form of the Ensemble Kalman filter (EnKF) for the discrete-time filtering problem and propose a novel extension of EnKF to the non-Gaussian setting utilizing input convex neural networks. Finally, the proposed methodology is used to derive the optimal transport form of the feedback particle filler (FPF) in the continuous-time limit, which constitutes its first variational construction without explicitly using the nonlinear filtering equation or Bayes' law.
翻译:本文件采用最佳运输理论,对贝耶斯人的法律作了不同的表述。变式表述是指在联合分配(国家、观察)及其独立连接之间的最佳运输方式。通过在运输图上强加某种结构,变式问题的解决办法被用来构建一个Brenier型地图,为观测信号的任何价值将先前的分配方式运输到后方分配方式。新的表述用于为离散时间过滤问题获取Ensemble Kalman过滤器(EnKF)的最佳运输形式,并提议将EnKF与非Gausian的设置进行新的扩展,利用输入convex神经网络。最后,拟议方法用于在连续时间限度内获取反馈粒子填充器(FPF)的最佳运输形式,这是它的第一个变式结构,没有明确使用非线性过滤方程式或Bayes法。