We introduce the notion of a Tsirelson pair of C*-algebras, which is a pair of C*-algebras for which the space of quantum strategies obtained by using states on the minimal tensor product of the pair and the space of quantum strategies obtained by using states on the maximal tensor product of the pair coincide. We exhibit a number of examples of such pairs that are ``nontrivial'' in the sense that the minimal tensor product and the maximal tensor product of the pair are not isomorphic. For example, we prove that any pair containing a C*-algebra with Kirchberg's QWEP property is a Tsirelson pair. We then introduce the notion of a C*-algebra with the Tsirelson property (TP) and establish a number of closure properties for this class. We also show that the class of C*-algebras with the TP form an axiomatizable class (in the sense of model theory), but that this class admits no ``effective'' axiomatization.
翻译:我们引入了一种齐里尔松式的C*-代数概念,即一对C*-代数概念,其量子战略的空间是通过使用一对最小的抗拉产品使用状态获得的,而量子战略的空间是通过使用一对最大抗拉产品使用状态获得的。我们展示了一些“非三相”的这种配子的例子,即该对子的最小抗拉产品和最大抗拉产品不是不畸形的。例如,我们证明任何一对配有Kirchberg的QWEP属性的C*-代数的配方是齐里尔松式的配方。我们随后引入了带有齐里尔松式属性的C*-代数概念,并为这一类建立了若干封闭属性。我们还表明,带有TP形式的C*-代数的等级不具有xomatable的类别(在模型理论意义上 ),但这一类中不承认具有有效氧化。