Notions of fair machine learning that seek to control various kinds of error across protected groups generally are cast as constrained optimization problems over a fixed model class. For such problems, tradeoffs arise: asking for various kinds of technical fairness requires compromising on overall error, and adding more protected groups increases error rates across all groups. Our goal is to break though such accuracy-fairness tradeoffs. We develop a simple algorithmic framework that allows us to deploy models and then revise them dynamically when groups are discovered on which the error rate is suboptimal. Protected groups don't need to be pre-specified: At any point, if it is discovered that there is some group on which our current model performs substantially worse than optimally, then there is a simple update operation that improves the error on that group without increasing either overall error or the error on previously identified groups. We do not restrict the complexity of the groups that can be identified, and they can intersect in arbitrary ways. The key insight that allows us to break through the tradeoff barrier is to dynamically expand the model class as new groups are identified. The result is provably fast convergence to a model that can't be distinguished from the Bayes optimal predictor, at least by those tasked with finding high error groups. We explore two instantiations of this framework: as a "bias bug bounty" design in which external auditors are invited to discover groups on which our current model's error is suboptimal, and as an algorithmic paradigm in which the discovery of groups on which the error is suboptimal is posed as an optimization problem. In the bias bounty case, when we say that a model cannot be distinguished from Bayes optimal, we mean by any participant in the bounty program. We provide both theoretical analysis and experimental validation.


翻译:寻求控制受保护群体中各种错误的公平机器学习通常会被视为固定模型类中的限制优化问题。 对于此类问题, 出现权衡: 要求各种技术公平需要妥协总体错误, 并增加更多受保护群体, 从而增加所有群体中的错误率。 我们的目标是通过这种准确公正权衡来打破这些错误率。 我们开发一个简单的算法框架, 允许我们部署模型, 然后当发现群体出现错误率低于最优的错误时, 并动态地修改这些模型。 受保护群体不需要预先指定: 如果发现某些群体存在我们当前模式表现得比最佳要差得多的, 那么就会出现一个简单的更新操作, 在不增加总体错误或先前确定群体中的错误的情况下, 来改进该组的错误率。 我们不限制能够识别的组的复杂性, 并且它们可以任意地相互交错。 允许我们打破交易率障碍的关键洞察力是动态地扩大模式的节流周期级 。 如果发现某组, 其结果是快速接近一个模型的趋近于一个模型, 我们的模型, 也就是在其中, 我们的极值分析组中, 最高级的组中, 我们的机级分析会分析是 。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员