Blades manufactured through flank and point milling will likely exhibit geometric variability. Gauging the aerodynamic repercussions of such variability, prior to manufacturing a component, is challenging enough, let alone trying to predict what the amplified impact of any in-service degradation will be. While rules of thumb that govern the tolerance band can be devised based on expected boundary layer characteristics at known regions and levels of degradation, it remains a challenge to translate these insights into quantitative bounds for manufacturing. In this work, we tackle this challenge by leveraging ideas from dimension reduction to construct low-dimensional representations of aerodynamic performance metrics. These low-dimensional models can identify a subspace which contains designs that are invariant in performance--the inactive subspace. By sampling within this subspace, we design techniques for drafting manufacturing tolerances and for quantifying whether a scanned component should be used or scrapped. We introduce the blade envelope as a visual and computational manufacturing guide for a blade. In this paper, the first of two parts, we discuss its underlying concept and detail its computational methodology, assuming one is interested only in the single objective of ensuring that the loss of all manufactured blades remains constant. To demonstrate the utility of our ideas we devise a series of computational experiments with the Von Karman Institute's LS89 turbine blade.


翻译:通过侧翼和点磨坊制造的刀锋将可能具有几何变异性。在制造一个部件之前,将这种变异性产生的空气动力效应计数已经足够具有挑战性,更不用说试图预测任何服务性降解的放大影响会有多大了。虽然控制容忍带的拇指规则可以基于已知区域和降解程度的预期边界层特性来设计,但我们仍难以将这些洞见转化为制造的定量界限。在这项工作中,我们通过利用从尺寸缩小到构建空气动力性能度量度的低维度表达法来应对这一挑战。这些低维模型可以确定一个在性能-非活动性能子空间中含有不易变的设计的子空间。通过在这一子空间内取样,我们设计了设计制造容度和量化是否应当使用扫描部件或报废的缩略图技术。我们引入刀片封作为刀片的视觉和计算制造指南。在本文的第一部分中,我们讨论其基本概念并详细描述其计算方法,假设一个仅对确保丢失所有制成品刀片的碎片在不活动空间中的单项目标感兴趣。我们设计了设计了制造的实验室模型的效用。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Ontology and Cognitive Outcomes
Arxiv
0+阅读 · 2021年1月8日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
0+阅读 · 2021年1月7日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
Arxiv
4+阅读 · 2019年12月2日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Ontology and Cognitive Outcomes
Arxiv
0+阅读 · 2021年1月8日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
0+阅读 · 2021年1月7日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
Arxiv
4+阅读 · 2019年12月2日
Arxiv
11+阅读 · 2018年5月13日
Top
微信扫码咨询专知VIP会员