Non-monotonic reasoning is an essential part of human intelligence prominently formalized in artificial intelligence research via answer set programming. In this paper, we introduce the sequential composition of answer set programs. We show that the notion of composition gives rise to a family of finite program algebras, baptized {\em ASP algebras} in this paper. Interestingly, we can derive algebraic formulas for the syntactic representation of the well-known Faber-Leone-Pfeifer- and Gelfond-Lifschitz reducts. On the semantic side, we show that the immediate consequence operator of a program can be represented via composition, which allows us to compute the least model semantics of Horn programs without any explicit reference to operators. As a result, we can characterize answer sets algebraically, which bridges the conceptual gap between the syntax and semantics of an answer set program in a mathematically satisfactory way, and which provides an algebraic characterization of strong and uniform equivalence. Moreover, it gives rise to an algebraic meta-calculus for answer set programs. In a broader sense, this paper is a further step towards an algebra of logic programs first envisioned by Richard A. O'Keefe in 1985 and in the future we plan to lift the methods of this paper to wider classes of programs, most importantly to higher-order and disjunctive programs and extensions thereof.


翻译:非声学推理是人工智能研究中通过答录制编程明显正式化的人类智能的一个基本部分。 在本文中, 我们引入了答案集程序顺序的构成。 我们显示组成概念产生了本文中限量程序代数、 洗礼到 em ASP代数的组合。 有趣的是, 我们可以以数学上令人满意的方式为著名的Faber- Leone- Pfefefer- 和 Gelfond- Lifschitz 调试的组合法的组合法的组合法和语义表达法的组合表达法得出代数公式。 在语义方面, 我们展示了一个程序的直接后果操作者可以通过组合来代表, 从而使我们能够在不明确引用操作者的情况下, 编译合合合合调调调制程序最小模式的代数。 作为结果, 我们可以以数学上令人满意的方式, 并且提供了强烈和统一的等同的代数描述。 此外, 我们从高的代数代数的代数操作者, 更广义地说, 也就是, 我们从1985年的逻辑中, 选择了一种更深层次的平级方案, 。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月22日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员