Non-monotonic reasoning is an essential part of human intelligence prominently formalized in artificial intelligence research via answer set programming. In this paper, we introduce the sequential composition of answer set programs. We show that the notion of composition gives rise to a family of finite program algebras, baptized {\em ASP algebras} in this paper. Interestingly, we can derive algebraic formulas for the syntactic representation of the well-known Faber-Leone-Pfeifer- and Gelfond-Lifschitz reducts. On the semantic side, we show that the immediate consequence operator of a program can be represented via composition, which allows us to compute the least model semantics of Horn programs without any explicit reference to operators. As a result, we can characterize answer sets algebraically, which bridges the conceptual gap between the syntax and semantics of an answer set program in a mathematically satisfactory way, and which provides an algebraic characterization of strong and uniform equivalence. Moreover, it gives rise to an algebraic meta-calculus for answer set programs. In a broader sense, this paper is a further step towards an algebra of logic programs first envisioned by Richard A. O'Keefe in 1985 and in the future we plan to lift the methods of this paper to wider classes of programs, most importantly to higher-order and disjunctive programs and extensions thereof.
翻译:非声学推理是人工智能研究中通过答录制编程明显正式化的人类智能的一个基本部分。 在本文中, 我们引入了答案集程序顺序的构成。 我们显示组成概念产生了本文中限量程序代数、 洗礼到 em ASP代数的组合。 有趣的是, 我们可以以数学上令人满意的方式为著名的Faber- Leone- Pfefefer- 和 Gelfond- Lifschitz 调试的组合法的组合法的组合法和语义表达法的组合表达法得出代数公式。 在语义方面, 我们展示了一个程序的直接后果操作者可以通过组合来代表, 从而使我们能够在不明确引用操作者的情况下, 编译合合合合调调调制程序最小模式的代数。 作为结果, 我们可以以数学上令人满意的方式, 并且提供了强烈和统一的等同的代数描述。 此外, 我们从高的代数代数的代数操作者, 更广义地说, 也就是, 我们从1985年的逻辑中, 选择了一种更深层次的平级方案, 。