This short paper examines diagrams describing neural network systems in academic conference proceedings. Many aspects of scholarly communication are controlled, particularly with relation to text and formatting, but often diagrams are not centrally curated beyond a peer review. Using a corpus-based approach, we argue that the heterogeneous diagrammatic notations used for neural network systems has implications for signification in this domain. We divide this into (i) what content is being represented and (ii) how relations are encoded. Using a novel structuralist framework, we use a corpus analysis to quantitatively cluster diagrams according to the author's representational choices. This quantitative diagram classification in a heterogeneous domain may provide a foundation for further analysis.
翻译:这份简短的论文分析了学术会议程序中描述神经网络系统的图表。学术通信的许多方面都受到控制,特别是在文本和格式方面,但往往没有在同行审议之外集中整理图表。我们用基于实体的方法认为,神经网络系统使用的多式图表标记对这个领域的标志性有影响。我们将其分为(一) 内容代表的内容和(二) 关系是如何编码的。我们使用新的结构框架,根据作者的代表性选择,对定量分类图进行分类分析。这种在多样化领域的定量图表分类可以作为进一步分析的基础。