The performance of local feature descriptors degrades in the presence of large rotation variations. To address this issue, we present an efficient approach to learning rotation invariant descriptors. Specifically, we propose Rotated Kernel Fusion (RKF) which imposes rotations on each convolution kernel and improves the inherent nature of CNN. Since RKF can be processed by the subsequent re-parameterization, no extra computational costs will be introduced in the inference stage. Moreover, we present Multi-oriented Feature Aggregation (MOFA) which ensembles features extracted from multiple rotated versions of input images and can provide auxiliary information for the training of RKF by leveraging the knowledge distillation strategy. We refer to the distilled RKF model as DRKF. Besides the evaluation on a rotation-augmented version of the public dataset HPatches, we also contribute a new dataset named DiverseBEV which consists of bird's eye view images with large viewpoint changes and camera rotations. Extensive experiments show that our method can outperform other state-of-the-art techniques when exposed to large rotation variations.
翻译:本地特征描述器的性能在大量旋转变换的情况下会退化。 为了解决这个问题, 我们提出一种有效的方法来学习输入图像的多旋转版本的旋转式解码器。 具体地说, 我们提议旋转的内核熔化( RKF), 强制每个卷发内核的旋转, 并改进CNN的固有性质。 由于 RKF 可以通过随后的重新参数化处理, 在推论阶段不会引入额外的计算成本 。 此外, 我们提出多方向特性聚合( MOFA), 将输入图像的多个旋转版本的特性聚合起来, 并且可以通过利用知识蒸馏战略为RKF 的培训提供辅助信息 。 我们将蒸馏的 RKF 模型称为 DRKF 。 除了对公共数据集 HPatches 的旋转式版本进行评估外, 我们还提供一个新的数据集, 名为“ ExvicleBEVEV”, 由鸟的视觉图像组成, 以及大视野变化和相机旋转组成。 广泛的实验显示, 我们的方法在暴露大型变换换时可以超越其他状态技术。</s>