Interactive visual analysis interfaces are critical in nearly every data task. Yet creating new interfaces is deeply challenging, as it requires the developer to understand the queries needed to express the desired analysis task, design the appropriate interface to express those queries for the task, and implement the interface using a combination of visualization, browser, server, and database technologies. Although prior work generates a set of interactive widgets that can express an input query log, this paper presents PI2, the first system to generate fully functional visual analysis interfaces from an example sequence of analysis queries. PI2 analyzes queries syntactically, and represents a set of queries using a novel Difftree structure that encodes systematic variations between query abstract syntax trees. PI2 then maps each Difftree to a visualization that renders its results, the variations in each Difftree to interactions, and generates a good layout for the interface. We show that PI2 can express data-oriented interactions in existing visualization interaction taxonomies, can reproduce or improve several real-world visual analysis interfaces, generates interfaces in 2-19s (median 6s), and scales linearly with the number of queries.


翻译:交互式视觉分析界面在几乎每一个数据任务中都至关重要。 然而,创建新界面是极具挑战性的,因为它要求开发者理解为表达所需的分析任务所需的查询,设计适当的接口以表达任务所需的查询,并利用视觉化、浏览器、服务器和数据库技术的组合来实施接口。虽然先前的工作产生了一组互动部件,可以表达输入查询日志,但本文展示了PI2,这是第一个从分析查询的示例序列中生成完全功能性视觉分析界面的系统系统系统系统系统化的系统系统化的系统化的系统化查询。 PI2 分析询问, 并代表一套使用新颖的 Difftree 结构来编码查询抽象语系树之间的系统变异的查询。 PI2 然后绘制每个 Difftree 的地图, 使其产生结果, 每个 Difftree 中的变异到互动, 并为界面生成一个良好的布局。 我们显示 PI2 可以表达现有可视化互动分类中的面向数据的互动, 可以复制或改进几个真实世界的视觉分析界面, 生成了2-19, 和直线形化的接口。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年9月17日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Arxiv
3+阅读 · 2018年4月3日
Arxiv
6+阅读 · 2018年3月31日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员