We propose a new approach to querying graph databases. Our approach balances competing goals of expressive power, language clarity and computational complexity. A distinctive feature of our approach is the ability to express properties of minimal (e.g. shortest) and maximal (e.g. most valuable) paths satisfying given criteria. To express complex properties in a modular way, we introduce labelling-generating ontologies. The resulting formalism is computationally attractive - queries can be answered in non-deterministic logarithmic space in the size of the database.


翻译:我们提出了一种新的查询图表数据库的方法。我们的方法平衡了表达力、语言清晰度和计算复杂性等相互竞争的目标。我们的方法的一个显著特征是能够表达满足特定标准的最小(例如最短)和最大(例如最有价值的)路径的特性。为了以模块方式表达复杂特性,我们引入了产生标签的理论。由此产生的形式主义在计算上具有吸引力。在数据库规模上,在非确定性对数空间中可以回答问题。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员