Surface roughness is primary measure of pavement performance that has been associated with ride quality and vehicle operating costs. Of all the surface roughness indicators, the International Roughness Index (IRI) is the most widely used. However, it is costly to measure IRI, and for this reason, certain road classes are excluded from IRI measurements at a network level. Higher levels of distresses are generally associated with higher roughness. However, for a given roughness level, pavement data typically exhibits a great deal of variability in the distress types, density, and severity. It is hypothesized that it is feasible to estimate the IRI of a pavement section given its distress types and their respective densities and severities. To investigate this hypothesis, this paper uses data from in-service pavements and machine learning methods to ascertain the extent to which IRI can be predicted given a set of pavement attributes. The results suggest that machine learning can be used reliably to estimate IRI based on the measured distress types and their respective densities and severities. The analysis also showed that IRI estimated this way depends on the pavement type and functional class. The paper also includes an exploratory section that addresses the reverse situation, that is, estimating the probability of pavement distress type distribution and occurrence severity/extent based on a given roughness level.


翻译:地表粗糙是测量路面性能的主要尺度,与骑车质量和车辆运行成本有关。在所有表面粗糙指标中,国际粗糙指数是使用最广泛的指标,但测量国际粗糙指数的成本很高,因此,某些道路类别被排除在网络一级IRI的测量之外。高难度一般与更粗糙有关。但是,对于某种粗糙水平,人行数据通常在遇险类型、密度和严重程度方面有很大差异。据推测,根据遇险类型及其各自的密度和严重程度估计铺路区路部分的IRI是可行的。根据遇险类型及其各自的密度和不同程度,估算铺路面的IRI是可行的。为调查这一假设,本文使用从在职人行道和机器学习方法提供的数据,以确定对IRI作出预测的程度与更粗糙的特征有关。结果显示,机器学习可以可靠地用来根据测得的遇险类型及其密度和严重程度估算IRIRI。分析还表明,IRI估计这种方式取决于路面类型和功能性密度。为了调查这一状况,本文还包含路面风险程度。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年9月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机类 | APNOMS 2019等国际会议信息6条
Call4Papers
4+阅读 · 2019年4月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
27+阅读 · 2020年12月24日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Learning From Positive and Unlabeled Data: A Survey
Arxiv
5+阅读 · 2018年11月12日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机类 | APNOMS 2019等国际会议信息6条
Call4Papers
4+阅读 · 2019年4月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员