Modern wireless cellular networks use massive multiple-input multiple-output (MIMO) technology. This technology involves operations with an antenna array at a base station that simultaneously serves multiple mobile devices which also use multiple antennas on their side. For this, various precoding and detection techniques are used, allowing each user to receive the signal intended for him from the base station. There is an important class of linear precoding called Regularized Zero-Forcing (RZF). In this work, we propose Adaptive RZF (ARZF) with a special kind of regularization matrix with different coefficients for each layer of multi-antenna users. These regularization coefficients are defined by explicit formulas based on SVD decompositions of user channel matrices. We study the optimization problem, which is solved by the proposed algorithm, with the connection to other possible problem statements. We also compare the proposed algorithm with state-of-the-art linear precoding algorithms on simulations with the Quadriga channel model. The proposed approach provides a significant increase in quality with the same computation time as in the reference methods.
翻译:现代无线蜂窝网络使用大规模多输入多输出技术。 这一技术涉及基地站的天线阵列操作,该天线阵列同时为多个移动装置同时服务,而这些装置也在其侧面使用多个天线。 为此,使用了各种预编码和探测技术,使每个用户都能从基地站接收预定给他的信号。 有一种重要的线性预编码类别叫做常规零强制(RZF)。 在这项工作中,我们提议了适应性RZF(ARZF),配有一种特殊类型的正规化矩阵,对多亚麻纳用户各层各有不同的系数。 这些正规化系数由基于用户频道矩阵SVD分解位置的清晰公式来定义。 我们研究了优化问题,这是通过拟议算法,与其他可能的问题说明相联系的。 我们还将模拟中的拟议算法与Quadriga频道模型的状态线性预编码算法进行了比较。 提议的方法在质量上与参考方法的计算时间相同,质量有了显著提高。