Advanced Driver Assistance Systems (ADAS) are increasingly important in improving driving safety and comfort, with Adaptive Cruise Control (ACC) being one of the most widely used. However, pre-defined ACC settings may not always align with driver's preferences and habits, leading to discomfort and potential safety issues. Personalized ACC (P-ACC) has been proposed to address this problem, but most existing research uses historical driving data to imitate behaviors that conform to driver preferences, neglecting real-time driver feedback. To bridge this gap, we propose a cloud-vehicle collaborative P-ACC framework that incorporates driver feedback adaptation in real time. The framework is divided into offline and online parts. The offline component records the driver's naturalistic car-following trajectory and uses inverse reinforcement learning (IRL) to train the model on the cloud. In the online component, driver feedback is used to update the driving gap preference in real time. The model is then retrained on the cloud with driver's takeover trajectories, achieving incremental learning to better match driver's preference. Human-in-the-loop (HuiL) simulation experiments demonstrate that our proposed method significantly reduces driver intervention in automatic control systems by up to 62.8%. By incorporating real-time driver feedback, our approach enhances the comfort and safety of P-ACC, providing a personalized and adaptable driving experience.
翻译:暂无翻译