This work presents a nonintrusive physics-preserving method to learn reduced-order models (ROMs) of Hamiltonian systems. Traditional intrusive projection-based model reduction approaches utilize symplectic Galerkin projection to construct Hamiltonian reduced models by projecting Hamilton's equations of the full model onto a symplectic subspace. This symplectic projection requires complete knowledge about the full model operators and full access to manipulate the computer code. In contrast, the proposed Hamiltonian operator inference approach embeds the physics into the operator inference framework to develop a data-driven model reduction method that preserves the underlying symplectic structure. Our method exploits knowledge of the Hamiltonian functional to define and parametrize a Hamiltonian ROM form which can then be learned from data projected via symplectic projectors. The proposed method is `gray-box' in that it utilizes knowledge of the Hamiltonian structure at the partial differential equation level, as well as knowledge of spatially local components in the system. However, it does not require access to computer code, only data to learn the models. Our numerical results demonstrate Hamiltonian operator inference on a linear wave equation, the cubic nonlinear Schr\"{o}dinger equation, and a nonpolynomial sine-Gordon equation. Accurate long-time predictions far outside the training time interval for nonlinear examples illustrate the generalizability of our learned models.
翻译:这项工作提出了一种非侵扰性物理保存方法,以学习汉密尔顿系统减序模型(ROMs) 。传统的侵扰性预测性模型减少方法使用随机性预测法,通过将汉密尔顿全模型的方程式投射到一个脉冲性子空间,建造汉密尔顿减序模型。这种共振性预测法要求完全了解全模型操作员,并充分使用计算机代码。与此形成对照,拟议的汉密尔顿操作员推断法将物理嵌入操作员推导框架,以开发一种数据驱动的减序模型,以维护基本的间隙结构。我们的方法利用汉密尔密尔顿功能的知识来定义和修复汉密尔顿全模型的减序模型,然后从通过脉冲投影仪预测器预测的数据中学习。拟议的方法是“光箱”,它利用部分差异方程式级的汉密尔密尔顿结构知识,以及系统中空间本地组成部分的知识。然而,它并不需要计算机代码,而仅需要数据,用于学习基础性同步结构的外等式模型。我们数字操作员的直线性等式等式等式模型。