This work affords new insights into Bayesian CART in the context of structured wavelet shrinkage. The main thrust is to develop a formal inferential framework for Bayesian tree-based regression. We reframe Bayesian CART as a g-type prior which departs from the typical wavelet product priors by harnessing correlation induced by the tree topology. The practically used Bayesian CART priors are shown to attain adaptive near rate-minimax posterior concentration in the supremum norm in regression models. For the fundamental goal of uncertainty quantification, we construct adaptive confidence bands for the regression function with uniform coverage under self-similarity. In addition, we show that tree-posteriors enable optimal inference in the form of efficient confidence sets for smooth functionals of the regression function.
翻译:这项工作在结构化的波子收缩背景下对巴耶斯- CART提供了对巴耶斯- CARRT的新洞察力。 主旨是为巴耶斯- 树基回归开发一个正式的推论框架。 我们重新将巴耶斯- CARRT 作为一种G型型的预设, 与典型的波子产品前期不同, 利用树本学的关联。 实际使用的巴耶斯- CART 前导显示, 在回归模型中, 在超峰值规范中, 实现适应性近速度- 微米马克斯后部集聚。 为了确定不确定性的基本目标, 我们为回归函数构建了适应性信任带, 并在自异性下统一覆盖范围。 此外, 我们显示, 树前导使得以高效的信任组合的形式, 为回归功能的顺利功能提供了最佳的推断。