In this work, we describe a Bayesian framework for the X-ray computed tomography (CT) problem in an infinite-dimensional setting. We consider reconstructing piecewise smooth fields with discontinuities where the interface between regions is not known. Furthermore, we quantify the uncertainty in the prediction. Directly detecting the discontinuities, instead of reconstructing the entire image, drastically reduces the dimension of the problem. Therefore, the posterior distribution can be approximated with a relatively small number of samples. We show that our method provides an excellent platform for challenging X-ray CT scenarios (e.g. in case of noisy data, limited angle, or sparse angle imaging). We investigate the accuracy and the efficiency of our method on synthetic data. Furthermore, we apply the method to the real-world data, tomographic X-ray data of a lotus root filled with attenuating objects. The numerical results indicate that our method provides an accurate method in detecting boundaries between piecewise smooth regions and quantifies the uncertainty in the prediction, in the context of X-ray CT.


翻译:在这项工作中,我们描述一个无穷维的X射线计算断层成像(CT)问题的巴伊西亚框架。我们考虑重建片面平滑的字段,在不为人知的地区间接口不连续的地方进行。此外,我们量化预测中的不确定性。直接探测不连续的情况,而不是重建整个图像,会大大缩小问题的维度。因此,后方分布可以与数量相对较少的样本相近。我们显示,我们的方法为具有挑战性的X射线CT情景提供了极好的平台(例如,在吵闹的数据、有限角度或稀疏角度成像的情况下)。我们调查了合成数据方法的准确性和效率。此外,我们将这种方法应用于真实世界的数据,用缩小天体的物体填充的彩虹根的X射线数据。数字结果表明,我们的方法提供了一种精确的方法,用于探测小片平滑区域之间的边界,并在X光CT范围内测量预测中的不确定性。

0
下载
关闭预览

相关内容

【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deceptive Decision-Making Under Uncertainty
Arxiv
0+阅读 · 2021年9月14日
Arxiv
0+阅读 · 2021年9月14日
Arxiv
30+阅读 · 2021年7月7日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员