Glioblastoma Multiforme is a very aggressive type of brain tumor. Due to spatial and temporal intra-tissue inhomogeneity, location and the extent of the cancer tissue, it is difficult to detect and dissect the tumor regions. In this paper, we propose survival prognosis models using four regressors operating on handcrafted image-based and radiomics features. We hypothesize that the radiomics shape features have the highest correlation with survival prediction. The proposed approaches were assessed on the Brain Tumor Segmentation (BraTS-2020) challenge dataset. The highest accuracy of image features with random forest regressor approach was 51.5\% for the training and 51.7\% for the validation dataset. The gradient boosting regressor with shape features gave an accuracy of 91.5\% and 62.1\% on training and validation datasets respectively. It is better than the BraTS 2020 survival prediction challenge winners on the training and validation datasets. Our work shows that handcrafted features exhibit a strong correlation with survival prediction. The consensus based regressor with gradient boosting and radiomics shape features is the best combination for survival prediction.


翻译:Glioblastoma 多重形体是一种极具侵略性的脑肿瘤类型。由于时间和空间上的问题内部不均匀性、位置和癌症组织的范围,很难检测和解剖肿瘤区域。在本文中,我们提议使用使用手制图像和放射特征操作的四个递减器进行生存预测模型。我们假设放射形状特征与生存预测具有最高的相关性。在脑肿瘤分块(BraTS-2020)挑战数据集上评估了拟议方法。随机森林递减器(BraTS-2020)的图像特征最高精确度为51.5 ⁇ / 用于培训,而验证数据集的图像特性最高精确度为51.7 ⁇ / 。形状特征的梯度递增递增递增器分别给出了培训和验证数据集的准确度91.5 ⁇ 和62.1 ⁇ / 。比BRATS 2020 培训和验证数据集中的生存预测赢家要好。我们的工作表明,手动特征与生存预测有很强的关联性。基于递减梯度递增和放射形状特征的共识是生存预测的最佳组合。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
已删除
将门创投
7+阅读 · 2019年3月28日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人体骨骼关键点检测综述
极市平台
21+阅读 · 2018年6月29日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
什么是常识?
keso怎么看
4+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月17日
Learning Discriminative Model Prediction for Tracking
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
已删除
将门创投
7+阅读 · 2019年3月28日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人体骨骼关键点检测综述
极市平台
21+阅读 · 2018年6月29日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
什么是常识?
keso怎么看
4+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员