The query-based black-box attacks, which don't require any knowledge about the attacked models and datasets, have raised serious threats to machine learning models in many real applications. In this work, we study a simple but promising defense technique, dubbed Random Noise Defense (RND) against query-based black-box attacks, which adds proper Gaussian noise to each query. It is lightweight and can be directly combined with any off-the-shelf models and other defense strategies. However, the theoretical guarantee of random noise defense is missing, and the actual effectiveness of this defense is not yet fully understood. In this work, we present solid theoretical analyses to demonstrate that the defense effect of RND against the query-based black-box attack and the corresponding adaptive attack heavily depends on the magnitude ratio between the random noise added by the defender (i.e., RND) and the random noise added by the attacker for gradient estimation. Extensive experiments on CIFAR-10 and ImageNet verify our theoretical studies. Based on RND, we also propose a stronger defense method that combines RND with Gaussian augmentation training (RND-GT) and achieves better defense performance.


翻译:以查询为基础的黑箱攻击并不要求了解被攻击模型和数据集,但对机器学习模型在许多实际应用中提出了严重威胁。在这项工作中,我们研究了一种简单但有希望的防御技术,即所谓的随机噪音防御(RND),以对抗基于询问的黑箱攻击,这为每个查询增加了适当的高斯语噪音。它很轻,可以直接与任何现成模型和其他防御战略相结合。然而,随机噪音防御的理论保障缺失,而且这一防御的实际有效性尚未完全被理解。在这项工作中,我们提出了坚实的理论分析,以证明RND对基于查询的黑箱攻击和相应的适应性攻击的防御效果在很大程度上取决于防御者(即RND)添加的随机噪音与攻击者添加的随机噪音之间的强度比。关于CRFAR-10和图像网络的大规模实验证实了我们的理论研究。基于RND,我们还提出一种更强大的防御方法,将RND与GOUS的增强能力培训结合起来,并实现更好的防御性。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
159+阅读 · 2020年11月13日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
159+阅读 · 2020年11月13日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员