Undoubtedly, high-fidelity 3D hair plays an indispensable role in digital humans. However, existing monocular hair modeling methods are either tricky to deploy in digital systems (e.g., due to their dependence on complex user interactions or large databases) or can produce only a coarse geometry. In this paper, we introduce NeuralHDHair, a flexible, fully automatic system for modeling high-fidelity hair from a single image. The key enablers of our system are two carefully designed neural networks: an IRHairNet (Implicit representation for hair using neural network) for inferring high-fidelity 3D hair geometric features (3D orientation field and 3D occupancy field) hierarchically and a GrowingNet(Growing hair strands using neural network) to efficiently generate 3D hair strands in parallel. Specifically, we perform a coarse-to-fine manner and propose a novel voxel-aligned implicit function (VIFu) to represent the global hair feature, which is further enhanced by the local details extracted from a hair luminance map. To improve the efficiency of a traditional hair growth algorithm, we adopt a local neural implicit function to grow strands based on the estimated 3D hair geometric features. Extensive experiments show that our method is capable of constructing a high-fidelity 3D hair model from a single image, both efficiently and effectively, and achieves the-state-of-the-art performance.
翻译:毋庸置疑, 高友谊 3D 毛发在数字人类中扮演着不可或缺的角色。 然而, 现有的单眼发型模型方法要么难以在数字系统中部署( 比如, 因为它们依赖复杂的用户互动或大型数据库), 要么只能产生粗略的几何。 在本文中, 我们引入了神经HDAir, 一个灵活、 完全自动的系统, 用单一图像来模拟高友谊毛发。 我们系统的关键推动因素是两个精心设计的神经网络: IRHairNet( 利用神经网络显示头发), 用来推断高忠诚 3D 头发几何特征( 3D 定向字段和 3D 占用域), 要么 等级化, 或 增长网络( 利用神经网络增长毛线), 以有效生成 3D 毛线 。 具体地, 我们用粗糙的、 维氧化的隐含功能( VIFu) 来代表全球的头发特征, 这一点通过从发光图中提取的地方细节得到进一步的加强。, 为了提高传统头发增长速度, 我们采用一种基于深度的深度的深度的直观的直视系统,,, 直观的直径分析, 我们采用一种基于直观的直径的直径的直径的测法, 。