We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 81K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web pages (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual subtasks of question rewriting, passage retrieval and reading comprehension required for the end-to-end conversational question answering (QA) task. We report the effectiveness of a strong baseline approach that combines the state-of-the-art model for question rewriting, and competitive models for open-domain QA. Our results set the first baseline for the QReCC dataset with F1 of 19.07, compared to the human upper bound of 74.47, indicating the difficulty of the setup and a large room for improvement.
翻译:我们引入了一个用于以对话方式重写问题的新数据集(QRECC),该数据集包含与81K问答对口的14K对话。QRECC的任务是在10M网页的集合中找到对谈话问题的答案(分成54M段落),对同一对话中的问题的答案可以通过若干网页传播。QRECC提供说明,使我们能够培训和评估对终端至终端谈话答题(QA)任务所需的问题重写、通过检索和阅读理解等次任务。我们报告了将问题重写最新模式与开放域QA竞争模式相结合的强有力的基线方法的有效性。我们的结果为QRC数据集设定了第一个基线,与19.07年的F1相比,人类上层有74.47个,表明设置的难度和一个大改进空间。