We present a Neural Network based Handwritten Text Recognition (HTR) model architecture that can be trained to recognize full pages of handwritten or printed text without image segmentation. Being based on an Image to Sequence architecture, it can be trained to extract text present in an image and sequence it correctly without imposing any constraints on language, shape of characters or orientation and layout of text and non-text. The model can also be trained to generate auxiliary markup related to formatting, layout and content. We use character level token vocabulary, thereby supporting proper nouns and terminology of any subject. The model achieves a new state-of-art in full page recognition on the IAM dataset and when evaluated on scans of real world handwritten free form test answers - a dataset beset with curved and slanted lines, drawings, tables, math, chemistry and other symbols - it performs better than all commercially available HTR APIs. It is deployed in production as part of a commercial web application.


翻译:我们推出一个基于神经网络的手写文本识别模型(HTR), 可以通过培训来识别完整页的手写文本或印刷文本,而无需图像分割。 以图像到序列结构为基础, 它可以被培训以正确图像和顺序提取文本, 而不会对语言、 字符形状或方向以及文本和非文本的布局施加任何限制。 该模型还可以被培训产生与格式、 版式和内容相关的辅助标记。 我们使用字符级符号词汇, 从而支持任何主题的适当名词和术语。 该模型在 IAM 数据集上实现了一个新的全页艺术状态, 并在对真实世界手写自由表格的测试答案进行扫描时被评估---- 一个带有曲线和倾斜线的数据集, 绘图、 表格、 数学、 化学 和其他符号---- 它的表现优于所有商业上可用的 HTR APIs 。 它作为商业网络应用程序的一部分被部署在生产中。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
已删除
将门创投
5+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
4+阅读 · 2019年11月21日
Arxiv
12+阅读 · 2019年3月14日
Rapid Customization for Event Extraction
Arxiv
7+阅读 · 2018年9月20日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
已删除
将门创投
5+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员