Eliminating examination bias accurately is pivotal to apply click-through data to train an unbiased ranking model. However, most examination-bias estimators are limited to the hypothesis of Position-Based Model (PBM), which supposes that the calculation of examination bias only depends on the rank of the document. Recently, although some works introduce information such as clicks in the same query list and contextual information when calculating the examination bias, they still do not model the impact of document representation on search engine result pages (SERPs) that seriously affects one's perception of document relevance to a query when examining. Therefore, we propose a Multi-Feature Integration Model (MFIM) where the examination bias depends on the representation of document except the rank of it. Furthermore, we mine a key factor slipoff counts that can indirectly reflects the influence of all perception-bias factors. Real world experiments on Baidu-ULTR dataset demonstrate the superior effectiveness and robustness of the new approach. The source code is available at \href{https://github.com/lixsh6/Tencent_wsdm_cup2023/tree/main/pytorch_unbias}{https://github.com/lixsh6/Tencent\_wsdm\_cup2023}
翻译:准确消除考试偏差是应用点击浏览数据来培训不偏倚排名模型的关键。 然而,大多数考试偏差估计符都局限于基于位置模型的假设,即计算考试偏差只取决于文件的级别。 最近,虽然有些作品引入了信息,如在同一查询列表中点击,在计算考试偏差时引入了背景信息,但是,它们仍然没有模拟文件代表对搜索引擎结果页面(SERPs)的影响,严重影响到人们在审查时对文件相关性的看法。因此,我们提议了一个多功能集成模型(MFIM),检查偏差取决于文件的表示,但级别除外。此外,我们做了一个关键因素误差计,可以间接反映所有认知偏差因素的影响。 Baidu-LautR 数据站的真实世界实验显示了新方法的优越性和稳健性。 源代码可在\href{https://github.com/lixsh6/Tencent_wcup_20233/tree/pyls_mblix_mbhus_mbirch_cins_unchnix_crescent_cent_cent_cent settine_</s>