CaLiGraph is a large-scale cross-domain knowledge graph generated from Wikipedia by exploiting the category system, list pages, and other list structures in Wikipedia, containing more than 15 million typed entities and around 10 million relation assertions. Other than knowledge graphs such as DBpedia and YAGO, whose ontologies are comparably simplistic, CaLiGraph also has a rich ontology, comprising more than 200,000 class restrictions. Those two properties - a large A-box and a rich ontology - make it an interesting challenge for benchmarking reasoners. In this paper, we show that a reasoning task which is particularly relevant for CaLiGraph, i.e., the materialization of owl:hasValue constraints into assertions between individuals and between individuals and literals, is insufficiently supported by available reasoning systems. We provide differently sized benchmark subsets of CaLiGraph, which can be used for performance analysis of reasoning systems.


翻译:CaLigraph是来自维基百科的大型跨域知识图,它利用了维基百科的分类系统、列表页和其他列表结构,包含1 500多万打字实体和大约1 000万份关系主张。除了DBpedia和YAGO等知识图外,CaLigraph还有丰富的本体学,其中包括20多万个等级限制。这两个属性――一个大的A箱和一个丰富的本体――使得基准推理师面临一个有趣的挑战。在本文中,我们表明,对CaLiGraph(即猫头鹰:Has Value限制个人之间以及个人与字体之间主张的内容)特别相关的推理任务没有得到现有推理系统的充分支持。我们提供了不同大小的CaLigraph基准子集,可用于对推理系统进行性能分析。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员