In recent years, the machine learning community has seen a continuous growing interest in research aimed at investigating dynamical aspects of both training procedures and machine learning models. Of particular interest among recurrent neural networks we have the Reservoir Computing (RC) paradigm characterized by conceptual simplicity and a fast training scheme. Yet, the guiding principles under which RC operates are only partially understood. In this work, we analyze the role played by Generalized Synchronization (GS) when training a RC to solve a generic task. In particular, we show how GS allows the reservoir to correctly encode the system generating the input signal into its dynamics. We also discuss necessary and sufficient conditions for the learning to be feasible in this approach. Moreover, we explore the role that ergodicity plays in this process, showing how its presence allows the learning outcome to apply to multiple input trajectories. Finally, we show that satisfaction of the GS can be measured by means of the Mutual False Nearest Neighbors index, which makes effective to practitioners theoretical derivations.


翻译:近年来,机器学习界对旨在调查培训程序和机器学习模式动态方面的研究的兴趣不断增加。在经常性神经网络中,我们特别感兴趣的是 " 回收计算(RC) " 模式,其特点是概念简单和快速培训计划。然而,驻地协调员运作的指导原则只得到部分理解。在这项工作中,我们分析了通用合成(GS)在培训驻地协调员解决一项通用任务时所发挥的作用。特别是,我们展示了GS如何让储量库正确编码系统生成输入信号的动态。我们还讨论了在这一方法中学习是否可行的必要和充分条件。此外,我们探索了在这一过程中电子化的作用,展示了它的存在如何使学习成果适用于多重输入轨迹。最后,我们表明,可以通过共同假近邻指数来衡量GS的满意度,该指数使实践者理论衍生有效。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
37+阅读 · 2020年9月12日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
60+阅读 · 2019年8月26日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月29日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
24+阅读 · 2021年1月25日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
4+阅读 · 2018年12月3日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
37+阅读 · 2020年9月12日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
60+阅读 · 2019年8月26日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年6月29日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
24+阅读 · 2021年1月25日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
4+阅读 · 2018年12月3日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Top
微信扫码咨询专知VIP会员