There are different ways to realize Reed Solomon (RS) codes. While in the storage community, using the generator matrices to implement RS codes is more popular, in the coding theory community the generator polynomials are typically used to realize RS codes. Prominent exceptions include HDFS-RAID, which uses generator polynomial based erasure codes, and extends the Apache Hadoop's file system. In this paper we evaluate the performance of an implementation of polynomial realization of Reed-Solomon codes, along with our optimized version of it, against that of a widely-used library (Jerasure) that implements the main matrix realization alternatives. Our experimental study shows that despite significant performance gains yielded by our optimizations, the polynomial implementations' performance is constantly inferior to those of matrix realization alternatives in general, and that of Cauchy bit matrices in particular.


翻译:实现Reed Solomon(RS)代码有不同的方式。 在储存社区,使用发电机矩阵实施Reed-Solomon(RS)代码更为流行,而在编码理论界,发电机多式计算机通常用于实现RS代码。显著的例外包括HDFS-RAID(HDFS-RAID),它使用发电机多式加密代码,扩展了Apache Hadoop的档案系统。在本文件中,我们对照一个广泛使用的图书馆(Jerasure)实施Reed-Solomon(Jerasure)实施Reed-Solomon(Solomon)代码的绩效,对照一个广泛使用的图书馆(Jerasure)实施主要矩阵实现替代工具的情况,我们实验研究表明,尽管我们的优化取得了显著的绩效收益,但多式计算机执行的性能一直低于总的矩阵实现替代工具,特别是Cauchy Bit矩阵的性能。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
AutoML: A Survey of the State-of-the-Art
Arxiv
71+阅读 · 2019年8月14日
Arxiv
3+阅读 · 2018年3月13日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员