Permutation list decoding recently draws attention as a possible alternative for list decoding of polar codes. In this letter, we investigate the distribution of Reed-Muller partially symmetric codes (RM-PSC), a family of polar codes yielding good performances under permutation list decoding. We prove the existence of these codes for almost all code dimensions if the code length is not greater than 256. Moreover, we analyze the absorption group of this family of codes under SC decoding, showing that it may include one or more blocks of size larger than one. Finally, we show by simulations that RM-PSC can outperform state-of-the-art polar codes constructions in terms of error correcting performance for short code lengths, while reducing decoding latency.
翻译:最近解码的变异列表提醒人们注意作为极地代码解码列表的可能的替代方法。 在本信中,我们调查了Reed- Muller部分对称代码(RM-PSC)的分布情况,这是一套极地代码,在变异列表解码中产生良好性能的极地代码。如果代码长度不大于256,我们证明几乎所有代码都存在这些代码。此外,我们分析了根据SC解码的这一组代码的吸收组,表明它可能包含一个或一个以上大小大于一个的块块。最后,我们通过模拟显示,RM-PSC可以超越最新极地代码的构造,在纠正短代码长度性能的错误方面,同时减少解码的拉长。