Building a visual overview of temporal event sequences with an optimal level-of-detail (i.e. simplified but informative) is an ongoing challenge - expecting the user to zoom into every important aspect of the overview can lead to missing insights. We propose a technique to build a multilevel overview of event sequences, whose granularity can be transformed across sequence clusters (vertical level-of-detail) or longitudinally (horizontal level-of-detail), using hierarchical aggregation and a novel cluster data representation Align-Score-Simplify. By default, the overview shows an optimal number of sequence clusters obtained through the average silhouette width metric - then users are able to explore alternative optimal sequence clusterings. The vertical level-of-detail of the overview changes along with the number of clusters, whilst the horizontal level-of-detail refers to the level of summarization applied to each cluster representation. The proposed technique has been implemented into a visualization system called Sequence Cluster Explorer (Sequen-C) that allows multilevel and detail-on-demand exploration through three coordinated views, and the inspection of data attributes at cluster, unique sequence, and individual sequence level. We present two case studies using real-world datasets in the healthcare domain: CUREd and MIMIC-III; which demonstrate how the technique can aid users to obtain a summary of common and deviating pathways, and explore data attributes for selected patterns.
翻译:建立时间事件序列的视觉概览,使其具有最佳的详细程度(即简化但信息丰富的)是一个持续的挑战 -- -- 期望用户放大到概览的每个重要方面,可能会导致缺乏洞察力。我们提出一种方法,以建立一个多层次的活动序列概览,其颗粒性可以跨越序列群(垂直不全级别)或纵向(横向不全级别)或纵向(横向不全),使用等级汇总和一个新的分组数据代表制。在默认情况下,概览显示通过平均环流宽度衡量标准获得的序列组的最佳数量 -- -- 然后用户能够探索替代的最佳顺序组群。概览变化与组群数目的垂直偏差程度,而横向不全度则是指对每个组群代表采用的总和水平。拟议技术已经应用于一个直观化系统,称为 " 后序群集探索 " (后序-C级),通过三个协调观点,允许多层次和细节的分组群集群集群集群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群集的最佳数量 -- -- -- -- 从而得以进行多级和详细的探索,然后探索,用户群集群集群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群