1.) Spatio-temporal datasets that are difficult to analyze are common in ecological surveys. There are software packages available to analyze these datasets, but many of them require advanced coding skills. There is a growing need for easy to use packages that researchers can use to analyze common ecological datasets 2.) We develop a particular generalized linear mixed model for spatio-temporal point-referenced data that is flexible enough to accommodate data from most ecological surveys while being structured enough to facilitate analyses without advanced coding. Our implementation in the staRVe package uses a computationally efficient version of a nearest neighbour Gaussian process enabling analysis of relatively large datasets. 3.) A brief simulation study shows our model produces accurate predictions and forecasts, while a tutorial analysis of a Carolina wren survey suggests a recommended workflow for analyses. We also analyze a more complicated scientific survey of haddock to showcase the capabilities of our model. 4.) Our model and package are tools that can easily be added to researchers' workflow to help make sense of data from ecological surveys. We emphasize the ability of our model to create useful visualisations of data which can then lead to identification of important trends in species distributions.
翻译:1. 难以分析的时空数据在生态调查中很常见。有软件包可以用来分析这些数据集,但其中许多需要先进的编码技能。越来越需要容易使用的软件包,研究人员可以用来分析共同的生态数据集。 (1) 我们为时空点参考数据开发一个特别普遍的线性混合模型,该模型足够灵活,能够容纳大多数生态调查的数据,同时又有足够的结构来便利分析,而没有先进的编码。我们在SARVe软件包中的实施使用一个计算高效版本的近邻高山进程,以便能够分析相对较大的数据集。 (3)一个简短的模拟研究显示我们的模型产生准确的预测和预测,而卡罗莱纳州圆柱形调查的辅导性分析则表明一个建议的分析工作流程。我们还分析了对黑洞进行更复杂的科学调查,以展示我们模型的能力。 4. 我们的模型和软件包是易于添加到研究人员工作流程的工具,以帮助了解生态调查的数据。我们强调模型能够创造有用的可导致重要趋势的物种分布。