We propose a new optimization formulation for training federated learning models. The standard formulation has the form of an empirical risk minimization problem constructed to find a single global model trained from the private data stored across all participating devices. In contrast, our formulation seeks an explicit trade-off between this traditional global model and the local models, which can be learned by each device from its own private data without any communication. Further, we develop several efficient variants of SGD (with and without partial participation and with and without variance reduction) for solving the new formulation and prove communication complexity guarantees. Notably, our methods are similar but not identical to federated averaging / local SGD, thus shedding some light on the role of local steps in federated learning. In particular, we are the first to i) show that local steps can improve communication for problems with heterogeneous data, and ii) point out that personalization yields reduced communication complexity.
翻译:我们为培训联邦学习模式提出了新的优化方案。标准方案的形式是经验风险最小化问题,目的是从所有参与设备所储存的私人数据中找到一个经过培训的单一全球模式。相反,我们的方案寻求在这种传统的全球模式和当地模式之间作出明确的权衡,每个设备都可以在没有任何交流的情况下从自己的私人数据中学习这些模式。此外,我们开发了几个高效的 SGD变式(有、没有部分参与,有和没有差异减少)来解决新的配方并证明通信的复杂性保障。 值得注意的是,我们的方法与平均/地方 SGD相似,但并不相同,因此对当地在联合学习中的步骤的作用作了一些说明。特别是,我们首先到(一)表明,地方步骤可以改善对不同数据问题的沟通,以及(二)指出,个人化可以降低通信的复杂性。