Pattern detection and string matching are fundamental problems in computer science and the accelerated expansion of bioinformatics and computational biology have made them a core topic for both disciplines. The SARS-CoV-2 pandemic has made such problems more demanding with hundreds or thousands of new genome variants discovered every week, because of constant mutations, and there is a desperate need for fast and accurate analyses. The requirement for computational tools for genomic analyses, such as sequence alignment, is very important, although, in most cases the resources and computational power required are enormous. The presented Multiple Genome Analytics Framework combines data structures and algorithms, specifically built for text mining and pattern detection, that can help to efficiently address several computational biology and bioinformatics problems concurrently with minimal resources. A single execution of advanced algorithms, with space and time complexity O(nlogn), is enough to acquire knowledge on all repeated patterns that exist in multiple genome sequences and this information can be used from other meta-algorithms for further meta-analyses. The potential of the proposed framework is demonstrated with the analysis of more than 300,000 SARS-CoV-2 genome sequences and the detection of all repeated patterns with length up to 60 nucleotides in these sequences. These results have been used to provide answers to questions such as common patterns among all variants, sequence alignment, palindromes and tandem repeats detection, different organism genome comparisons, polymerase chain reaction primers detection, etc.


翻译:计算机科学以及生物信息学和计算生物学的加速扩展是计算机科学和生物信息学和计算生物学的根本性问题。SARS-COV-2大流行使这类问题更加艰巨,因为由于不断的突变,每周每星期都会发现数百或数千个新的基因变异变体,因为不断突变,因此每周都发现数百或数千个新的基因变异,因此,SARS-COV-2大流行使这类问题更加艰巨,由于不断突变,迫切需要快速和准确的分析。对于基因组分析的计算工具,如序列调整等的计算工具的要求非常重要,尽管在大多数情况下,所需要的资源和计算能力是巨大的。提出的多基因组分析框架将数据结构和算法结合了数据结构和算法,特别是用于文本采矿和模式探测的文本和模式探测,有助于有效解决与最少的资源同时发现数或数千个新的基因组变异基因组问题。单项的先进算算算,加上空间和时间复杂的O(nlognlogn),足以获得关于多种基因序列中存在的所有重复模式的知识,这种信息可以从其他元-数值测算法用于进一步的进一步进行元分析分析。拟议的框架的潜力通过对60至60以上(S-CS-C-C-CO-C-C-C-CO-C-C-C-C-C-C-C-C-C-C-C-C-C-CV-2-C-C-C-C-CL-2-2-II)的分析、使用这些序列、这些序列、这些序列的反复测序、这些序列的探测提供这些序列的反复的、这些序列的探测和结果提供所有的、提供这些结果的探测和结果提供所有的、提供这些结果的反复的解、提供这些序列的探测和结果,提供所有的解、提供所有的、提供这些结果的、提供所有的解、提供所有的解的解、提供、提供、提供、提供所有的、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供、提供这些的、提供这些的、提供这些的、提供这些的、提供这些的、提供这些的、提供这些的、提供这些的、提供这些

0
下载
关闭预览

相关内容

Explanation:生物信息学。 Publisher:Oxford University Press。 SIT: http://dblp.uni-trier.de/db/journals/bioinformatics/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员