Machine learning (ML) classification tasks can be carried out on a quantum computer (QC) using Probabilistic Quantum Memory (PQM) and its extension, Parameteric PQM (P-PQM) by calculating the Hamming distance between an input pattern and a database of $r$ patterns containing $z$ features with $a$ distinct attributes. For accurate computations, the feature must be encoded using one-hot encoding, which is memory-intensive for multi-attribute datasets with $a>2$. We can easily represent multi-attribute data more compactly on a classical computer by replacing one-hot encoding with label encoding. However, replacing these encoding schemes on a QC is not straightforward as PQM and P-PQM operate at the quantum bit level. We present an enhanced P-PQM, called EP-PQM, that allows label encoding of data stored in a PQM data structure and reduces the circuit depth of the data storage and retrieval procedures. We show implementations for an ideal QC and a noisy intermediate-scale quantum (NISQ) device. Our complexity analysis shows that the EP-PQM approach requires $O\left(z \log_2(a)\right)$ qubits as opposed to $O(za)$ qubits for P-PQM. EP-PQM also requires fewer gates, reducing gate count from $O\left(rza\right)$ to $O\left(rz\log_2(a)\right)$. For five datasets, we demonstrate that training an ML classification model using EP-PQM requires 48% to 77% fewer qubits than P-PQM for datasets with $a>2$. EP-PQM reduces circuit depth in the range of 60% to 96%, depending on the dataset. The depth decreases further with a decomposed circuit, ranging between 94% and 99%. EP-PQM requires less space; thus, it can train on and classify larger datasets than previous PQM implementations on NISQ devices. Furthermore, reducing the number of gates speeds up the classification and reduces the noise associated with deep quantum circuits. Thus, EP-PQM brings us closer to scalable ML on a NISQ device.


翻译:机器学习( ML) 的分类任务可以在量子计算机上进行, 使用 Probabtic 量子存储( QC) 和扩展, Parameteric PQM (P- PQM) 计算输入模式和含有美元特性的美元模式数据库之间的 Hamming 距离( $z美元) 。 精确计算时, 特性必须使用一对数编码( 这是用于以 $>2 来存储多分配数据集的记忆密集型PP2( QC) 。 我们很容易在古典计算机上代表多分配数据, 以标签编码取代一对热的编码。 然而, 取代这些在 QC 输入的编码计划并不简单, 因为 PQM 和 P- P- PQQM 运行模式在量位水平上运行。 我们展示了一个强化的 P- QM, 称为 EP- P- PQM, 可以进一步将数据储存到数据存储和检索程序的电路深。 我们展示了一个理想的 QC 和 QO- mQ 数据分析, 需要一个硬的 QQQ 数据。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年6月30日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年6月30日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员