Modern data-intensive applications demand high computation capabilities with strict power constraints. Unfortunately, such applications suffer from a significant waste of both execution cycles and energy in current computing systems due to the costly data movement between the computation units and the memory units. Genome analysis and weather prediction are two examples of such applications. Recent FPGAs couple a reconfigurable fabric with high-bandwidth memory (HBM) to enable more efficient data movement and improve overall performance and energy efficiency. This trend is an example of a paradigm shift to near-memory computing. We leverage such an FPGA with high-bandwidth memory (HBM) for improving the pre-alignment filtering step of genome analysis and representative kernels from a weather prediction model. Our evaluation demonstrates large speedups and energy savings over a high-end IBM POWER9 system and a conventional FPGA board with DDR4 memory. We conclude that FPGA-based near-memory computing has the potential to alleviate the data movement bottleneck for modern data-intensive applications.
翻译:现代数据密集型应用要求高的计算能力,并有严格的电力限制。不幸的是,由于计算单位和记忆单位之间的数据移动费用昂贵,这些应用在目前的计算系统中造成了执行周期和能源的巨大浪费。基因组分析和天气预测是这种应用的两个实例。最近,菲律宾菲律宾竞争管理局将可重新配置的具有高带宽内存(HBM)的结构与高带宽内存(HBM)相结合,以便更有效地进行数据流动,提高总体性能和能源效率。这一趋势是向近模计算模式转变的一个范例。我们利用高带宽内存(HBM)的FPGA来改进基因分析的预先调整过滤步骤和气象预测模型的代表性内核。我们的评估表明,在高端IBM POWER9系统和常规的PGAD4记忆委员会上,快速增长和节能。我们的结论是,基于菲律宾竞争管理局的近模计算有可能减轻现代数据密集应用的数据流动瓶颈。