Mass spectrometry (MS) based omics data analysis require significant time and resources. To date, few parallel algorithms have been proposed for deducing peptides from mass spectrometry-based data. However, these parallel algorithms were designed, and developed when the amount of data that needed to be processed was smaller in scale. In this paper, we prove that the communication bound that is reached by the \emph{existing} parallel algorithms is $\Omega(mn+2r\frac{q}{p})$, where $m$ and $n$ are the dimensions of the theoretical database matrix, $q$ and $r$ are dimensions of spectra, and $p$ is the number of processors. We further prove that communication-optimal strategy with fast-memory $\sqrt{M} = mn + \frac{2qr}{p}$ can achieve $\Omega({\frac{2mnq}{p}})$ but is not achieved by any existing parallel proteomics algorithms till date. To validate our claim, we performed a meta-analysis of published parallel algorithms, and their performance results. We show that sub-optimal speedups with increasing number of processors is a direct consequence of not achieving the communication lower-bounds. We further validate our claim by performing experiments which demonstrate the communication bounds that are proved in this paper. Consequently, we assert that next-generation of \emph{provable}, and demonstrated superior parallel algorithms are urgently needed for MS based large systems-biology studies especially for meta-proteomics, proteogenomic, microbiome, and proteomics for non-model organisms. Our hope is that this paper will excite the parallel computing community to further investigate parallel algorithms for highly influential MS based omics problems.


翻译:以质量光谱学为基础的基于 质量光谱学的数据分析需要大量的时间和资源。 到目前为止, 几乎没有提议使用平行算法来从基于质量光谱的数据中除去peptides。 然而, 这些平行算法是设计出来的, 当需要处理的数据数量在规模上缩小时, 这些平行算法是开发的。 在本文中, 我们证明由\emph{ 存在} 平行算法( memega) (mn+2r\frac{q ⁇ p}) 所连接的通信可以达到$( mmn+2r\frac{q ⁇ p} $ 。 美元和美元是理论数据库矩阵的维度, 美元和美元是平行的, 美元是光谱学的维度, 美元是用来证实我们快速模型的运行结果, 并且我们通过运行一个快速的直线算算法, 也证明了我们运行一个直线的运行结果, 运行一个直径直径直的运算法, 以我们运行一个直径直径直的运行的算算算法, 运行一个直直的算算算, 以我们运行一个直算算算法的运行的运行的运行的运行的运行的运行结果, 。

0
下载
关闭预览

相关内容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移动Ad hoc和传感器系统IEEE国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/mass/index.html
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
已删除
将门创投
10+阅读 · 2019年3月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年10月8日
VIP会员
相关VIP内容
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
已删除
将门创投
10+阅读 · 2019年3月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员