Animals are diverse in shape, but building a deformable shape model for a new species is not always possible due to the lack of 3D data. We present a method to capture new species using an articulated template and images of that species. In this work, we focus mainly on birds. Although birds represent almost twice the number of species as mammals, no accurate shape model is available. To capture a novel species, we first fit the articulated template to each training sample. By disentangling pose and shape, we learn a shape space that captures variation both among species and within each species from image evidence. We learn models of multiple species from the CUB dataset, and contribute new species-specific and multi-species shape models that are useful for downstream reconstruction tasks. Using a low-dimensional embedding, we show that our learned 3D shape space better reflects the phylogenetic relationships among birds than learned perceptual features.
翻译:动物的形状各不相同, 但由于缺乏 3D 数据, 建立新物种变形形状模型并非总有可能。 我们提出一种方法, 使用该物种的清晰模板和图像捕捉新物种。 在这项工作中, 我们主要关注鸟类。 虽然鸟类代表了哺乳动物物种的近两倍, 但是没有准确的形状模型。 为了捕捉新物种, 我们首先将描述的模板适合每个训练样本。 通过脱钩形状和形状, 我们从图像证据中学习一个形状空间, 捕捉物种之间和物种内部的差异。 我们从 CUB 数据集中学习多种物种的模式, 并贡献了有助于下游重建任务的新的物种和多物种形状模型。 我们使用低维嵌入, 显示我们所学的 3D 形状空间比学的洞察特征更好地反映鸟类之间的植物遗传关系 。