The concept of k-core in complex networks plays a key role in many applications, e.g., understanding the global structure, or identifying central/critical nodes, of a network. A malicious attacker with jamming ability can exploit the vulnerability of the k-core structure to attack the network and invalidate the network analysis methods, e.g., reducing the k-shell values of nodes can deceive graph algorithms, leading to the wrong decisions. In this paper, we investigate the robustness of the k-core structure under adversarial attacks by deleting edges, for the first time. Firstly, we give the general definition of targeted k-core attack, map it to the set cover problem which is NP-hard, and further introduce a series of evaluation metrics to measure the performance of attack methods. Then, we propose $Q$ index theoretically as the probability that the terminal node of an edge does not belong to the innermost core, which is further used to guide the design of our heuristic attack methods, namely COREATTACK and GreedyCOREATTACK. The experiments on a variety of real-world networks demonstrate that our methods behave much better than a series of baselines, in terms of much smaller Edge Change Rate (ECR) and False Attack Rate (FAR), achieving state-of-the-art attack performance. More impressively, for certain real-world networks, only deleting one edge from the k-core may lead to the collapse of the innermost core, even if this core contains dozens of nodes. Such a phenomenon indicates that the k-core structure could be extremely vulnerable under adversarial attacks, and its robustness thus should be carefully addressed to ensure the security of many graph algorithms.


翻译:复杂网络中的 k- 核心概念在许多应用中发挥着关键作用, 比如, 理解全球结构, 或者确定网络的中央/ 关键节点。 具有干扰能力的恶意攻击者可以利用 k- 核心结构的脆弱性攻击网络, 并否定网络分析方法。 例如, 降低节点的K- 壳值可以欺骗图形算法, 导致错误的决定。 本文首次通过删除边缘来调查对抗性攻击下的 k- 核心结构的稳健性。 首先, 我们给出了目标的 k- 核心攻击的一般定义, 将它映射为NP- 硬的一组覆盖问题, 并进一步推出一系列评估指标来衡量攻击方法的性能。 然后, 我们从理论上提出 $ 指数, 因为边缘的终端值可能不属于最核心的算法 。 本文中, 我们用来指导我们疯狂攻击方法的设计, 即 COREATACK 和 Greedy COARTACK 。 各种真实网络的实验显示, 真实- 核心网络的稳定性, 因此, 核心- 核心 水平 水平 可能比 核心 核心 核心 核心 核心 更能 更明显地 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
.NET Core 原生DI+AOP实现注解式编程
DotNet
8+阅读 · 2019年9月9日
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
8+阅读 · 2018年3月17日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
.NET Core 原生DI+AOP实现注解式编程
DotNet
8+阅读 · 2019年9月9日
ICML2019:Google和Facebook在推进哪些方向?
中国人工智能学会
5+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员