The challenge of learning a new concept, object, or a new medical disease recognition without receiving any examples beforehand is called Zero-Shot Learning (ZSL). One of the major issues in deep learning based methodologies such as in Medical Imaging and other real-world applications is the requirement of large annotated datasets prepared by clinicians or experts to train the model. ZSL is known for having minimal human intervention by relying only on previously known or trained concepts plus currently existing auxiliary information. This makes the ZSL applicable in many real-world scenarios, from unknown object detection in autonomous vehicles to medical imaging and unforeseen diseases such as COVID-19 Chest X-Ray (CXR) based diagnosis. We introduce a novel and broaden solution called Few/one-shot learning, and present the definition of the ZSL problem as an extreme case of the few-shot learning. We review over fundamentals and the challenging steps of Zero-Shot Learning, including state-of-the-art categories of solutions, as well as our recommended solution, motivations behind each approach, their advantages over each category to guide both clinicians and AI researchers to proceed with the best techniques and practices based on their applications. We then review through different datasets inducing medical and non-medical images, the variety of splits, and the evaluation protocols proposed so far. Finally, we discuss the recent applications and future directions of ZSL. We aim to convey a useful intuition through this paper towards the goal of handling complex learning tasks more similar to the way humans learn. We mainly focus on two applications in the current modern yet challenging era: coping with an early and fast diagnosis of COVID-19 cases, and also encouraging the readers to develop other similar AI-based automated detection/recognition systems using ZSL.


翻译:学习新概念、对象或新医学疾病识别而不事先得到任何实例的挑战被称为零热学习(ZSL) 。在医学成像和其他现实世界应用中,深层次学习基础方法(如医学成像和其他应用)中的主要问题之一是需要临床医生或专家为培训模型而准备大量附加说明的数据集。人们知道,仅依靠以前已知或经过培训的概念以及现有的辅助信息,人类干预极少。这使得ZSL应用于许多复杂的现实世界情景中,从自主车辆中未知的物体探测到医学成像和意外疾病,如COVID-19 Chest X-Ray(CXR)的诊断。我们引入了一个创新和扩大的解决方案,称为“少/一拍”学习,并将ZSL问题的定义作为微小的学习的极端案例。我们审视了零热学习的基础和具有挑战性的步骤,包括基于现状的解决方案类别,以及我们推荐的解决方案背后的动机,以及他们在每个类别中的优势是指导临床师和AISL的早期诊断。我们用最先进的方法,然后用最先进的方法来学习他们未来的医学变异的版本。我们学习数据,然后学习他们未来的应用。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2021年1月14日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
12+阅读 · 2019年3月14日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员