Cross-domain Recommendation (CR) has been extensively studied in recent years to alleviate the data sparsity issue in recommender systems by utilizing different domain information. In this work, we focus on the more general Non-overlapping Cross-domain Sequential Recommendation (NCSR) scenario. NCSR is challenging because there are no overlapped entities (e.g., users and items) between domains, and there is only users' implicit feedback and no content information. Previous CR methods cannot solve NCSR well, since (1) they either need extra content to align domains or need explicit domain alignment constraints to reduce the domain discrepancy from domain-invariant features, (2) they pay more attention to users' explicit feedback (i.e., users' rating data) and cannot well capture their sequential interaction patterns, (3) they usually do a single-target cross-domain recommendation task and seldom investigate the dual-target ones. Considering the above challenges, we propose Prompt Learning-based Cross-domain Recommender (PLCR), an automated prompting-based recommendation framework for the NCSR task. Specifically, to address the challenge (1), PLCR resorts to learning domain-invariant and domain-specific representations via its prompt learning component, where the domain alignment constraint is discarded. For challenges (2) and (3), PLCR introduces a pre-trained sequence encoder to learn users' sequential interaction patterns, and conducts a dual-learning target with a separation constraint to enhance recommendations in both domains. Our empirical study on two sub-collections of Amazon demonstrates the advance of PLCR compared with some related SOTA methods.


翻译:跨领域推荐(CR)近年来得到广泛研究,通过利用不同领域信息缓解了推荐系统中的数据稀疏问题。本文关注更普遍的非重叠跨领域顺序推荐(NCSR)场景。NCSR 具有挑战性,因为领域之间没有重叠的实体(例如,用户和项目),只有用户的隐式反馈和没有内容信息。以前的 CR 方法不能很好地解决 NCSR,因为(1)它们要么需要额外的内容来对齐领域,要么需要显式的领域对齐约束来从领域不变特征中减少领域差异,(2)它们更关注用户的显式反馈(即用户的评分数据)并不能很好地捕捉他们的顺序交互模式,(3)它们通常执行单一目标的跨度推荐,很少研究双目标。考虑到上述挑战,我们提出基于 Prompt Learning 的跨领域推荐器(PLCR),一种自动提示的推荐框架,用于 NCSR 任务。具体而言,为解决挑战(1),PLCR 借助其提示学习器组件通过学习领域不变和领域特定表示来学习,其中领域对齐约束被舍弃。对于挑战(2)和(3),PLCR 引入一个预训练的序列编码器来学习用户的顺序交互模式,并通过一个分离约束进行双学习目标以增强两个领域的推荐效果。我们在 Amazon 的两个子集上进行的实证研究显示了 PLCR 与一些相关最新方法相比的进步。

0
下载
关闭预览

相关内容

【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
专知会员服务
88+阅读 · 2020年1月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关VIP内容
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
专知会员服务
88+阅读 · 2020年1月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员