项目名称: 融合实体和交互上下文信息的社会化推荐方法研究
项目编号: No.61403390
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 吴书
作者单位: 中国科学院自动化研究所
项目金额: 25万元
中文摘要: 推荐系统是应对信息过载并为用户提供信息推荐的有效工具。随着社交媒体和移动设备的广泛应用,系统中收集了大量上下文信息,而现有社会化推荐算法又难以有效融合这种上下文信息。为实现常见的实体和交互上下文融合的社会化推荐算法这个整体目标,亟需解决三个问题:第一,现有工作在融合多视角实体上下文时,没能有效利用多视角间的关联特性,来消除噪声、冗余和维度差异;第二,现有工作缺乏有效的多类别交互上下文融合的策略,亦没有提取和利用其操作性语义的方法;第三,现有工作未能有效结合实体和交互信息,来挖掘社会化网络中的社交关系和领域关系。针对以上问题,本项目着眼于把握多视角实体上下文的关联关系,提炼多视角交互上下文的操作性语义,结合实体和交互信息深度挖掘社会化网络,构建融合实体和交互上下文的社会化推荐算法框架,为融合上下文信息的社会化推荐算法应用提供理论依据和技术基础。
中文关键词: 推荐系统;个性化推荐;情境感知;时序信息;
英文摘要: Recommendation systems are significant tools in handling the problem of information overload, as well as providing personalized information. With the extensive applications of social media and portable devices, great amount of the contextual information i
英文关键词: Recommendation Systems;Personalized Recommendation;Context Aware;Sequential Information;