We introduce Dirichlet pruning, a novel post-processing technique to transform a large neural network model into a compressed one. Dirichlet pruning is a form of structured pruning which assigns the Dirichlet distribution over each layer's channels in convolutional layers (or neurons in fully-connected layers), and estimates the parameters of the distribution over these units using variational inference. The learned distribution allows us to remove unimportant units, resulting in a compact architecture containing only crucial features for a task at hand. Our method is extremely fast to train. The number of newly introduced Dirichlet parameters is only linear in the number of channels, which allows for rapid training, requiring as little as one epoch to converge. We perform extensive experiments, in particular on larger architectures such as VGG and WideResNet (45% and 52% compression rate, respectively) where our method achieves the state-of-the-art compression performance and provides interpretable features as a by-product.
翻译:我们引入了Drichlet 修剪技术, 这是一种将大型神经网络模型转换成压缩模型的新型后处理技术。 Dirichlet 修剪是一种结构化的修剪方法, 将Drichlet分布在卷发层( 或完全连通层中的神经元) 的每个层的管道上, 并使用变异推力来估计这些单元的分布参数。 学识的分发使我们能够去除不重要的单元, 从而形成一个只包含手头任务关键特性的紧凑结构 。 我们的方法非常快。 新引入的 Dirichlet 参数数量在频道数量上只有线性, 能够进行快速的培训, 只需要一个小于一个小节点即可聚集。 我们进行了广泛的实验, 特别是在更大的结构上, 如 VGG 和 WideResNet (分别为45% 和 52% 的压缩率), 我们的方法可以达到最先进的压缩性能, 并提供可解释的副产品特性 。