We present a transfer learning system to perform a mixed Spanish-English sentiment classification task. Our proposal uses the state-of-the-art language model BERT and embed it within a ULMFiT transfer learning pipeline. This combination allows us to predict the polarity detection of code-mixed (English-Spanish) tweets. Thus, among 29 submitted systems, our approach (referred to as dplominop) is ranked 4th on the Sentimix Spanglish test set of SemEval 2020 Task 9. In fact, our system yields the weighted-F1 score value of 0.755 which can be easily reproduced -- the source code and implementation details are made available.
翻译:我们提出了一个传输学习系统,以完成西班牙语-英语混合情绪分类任务。我们的提案使用最先进的语言模型BERT,并将其嵌入ULMFiT传输学习管道。这种组合使我们能够预测代码混合(英语-西班牙语)推特的极度检测。因此,在提交的29个系统中,我们的方法(称为dplominoop)在SemEval 2020任务9的Sentimix Spanglish测试集中排名第四。事实上,我们的系统得出了可轻易复制的0.755的加权F1分值,即源代码和执行细节。