We propose to leverage a real-world, human activity RGB dataset to teach a robot Task-Oriented Grasping (TOG). We develop a model that takes as input an RGB image and outputs a hand pose and configuration as well as an object pose and a shape. We follow the insight that jointly estimating hand and object poses increases accuracy compared to estimating these quantities independently of each other. Given the trained model, we process an RGB dataset to automatically obtain the data to train a TOG model. This model takes as input an object point cloud and outputs a suitable region for task-specific grasping. Our ablation study shows that training an object pose predictor with the hand pose information (and vice versa) is better than training without this information. Furthermore, our results on a real-world dataset show the applicability and competitiveness of our method over state-of-the-art. Experiments with a robot demonstrate that our method can allow a robot to preform TOG on novel objects.


翻译:我们建议利用真实世界的人类活动 RGB 数据集来教授机器人任务导向的刻度(TOG) 。 我们开发了一种模型, 将 RGB 图像和输出作为输入输入, 将手形和形状以及物体的形状和形状作为输入。 我们遵循这样的洞察力, 即联合估计手和物体会提高准确性, 而不是独立估计这些数量。 根据经过培训的模型, 我们处理一个 RGB 数据集, 以自动获取数据来训练TOG 模型。 这个模型将一个对象点云和输出出一个适合具体任务掌握的区域作为输入。 我们的膨胀研究表明, 以手形信息( 反之) 来训练一个对象显示显示一个对象的预测器比训练更好。 此外, 我们在一个真实世界的数据集上的结果显示了我们的方法对最新技术的实用性和竞争力。 与机器人的实验表明, 我们的方法可以允许机器人在新对象上预先形成TOG 。

0
下载
关闭预览

相关内容

ACM TOG是计算机图形学领域最重要的同行评审期刊,主要研究人员在其中讨论计算机辅助设计,合成图像生成,渲染,实体建模和其他领域的突破。 官网地址:http://dblp.uni-trier.de/db/journals/tog/
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Top
微信扫码咨询专知VIP会员