Many problems can be solved by iteration by multiple participants (processors, servers, routers etc.). Previous mathematical models for such asynchronous iterations assume a single function being iterated by a fixed set of participants. We will call such iterations static since the system's configuration does not change. However in several real-world examples, such as inter-domain routing, both the function being iterated and the set of participants change frequently while the system continues to function. In this paper we extend Uresin & Dubois's work on static iterations to develop a model for this class of "dynamic" or "always on" asynchronous iterations. We explore what it means for such an iteration to be implemented correctly, and then prove two different conditions on the set of iterated functions that guarantee the full asynchronous iteration satisfies this new definition of correctness. These results have been formalised in Agda and the resulting library is publicly available.


翻译:许多问题可以通过多个参与者(处理器、服务器、路由器等)的迭代来解决。 以往的同步迭代等数学模型假定一个单一功能由一组固定参与者迭代。 我们将称这种迭代为静态, 因为系统配置没有改变 。 但是, 在多个真实世界的例子中, 比如跨域路由, 函数正在迭代, 参与者集在系统继续运行时经常变化 。 在本文中, 我们扩展了 Uresin & Dubois 关于静态迭代的作品, 以开发一个“ 动态” 或“ 循环运行” 等类的“ 动态” 迭代代模式 。 我们探索这种迭代意味着什么, 要正确执行, 然后证明迭代函数组上两种不同的条件, 保证完全的互换连接能满足这个新的正确性定义 。 这些结果已经在阿格达正式化, 由此产生的图书馆可以公开查阅 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
已删除
将门创投
5+阅读 · 2019年9月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月20日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
已删除
将门创投
5+阅读 · 2019年9月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员