We consider bounds on the generalization performance of the least-norm linear regressor, in the over-parameterized regime where it can interpolate the data. We describe a sense in which any generalization bound of a type that is commonly proved in statistical learning theory must sometimes be very loose when applied to analyze the least-norm interpolant. In particular, for a variety of natural joint distributions on training examples, any valid generalization bound that depends only on the output of the learning algorithm, the number of training examples, and the confidence parameter, and that satisfies a mild condition (substantially weaker than monotonicity in sample size), must sometimes be very loose -- it can be bounded below by a constant when the true excess risk goes to zero.


翻译:我们考虑过量参数化制度中最不中性线性递减者一般性能的界限,在这种制度下,它可以对数据进行内插。我们描述了一种感觉,即统计学习理论中通常证明的某类一般性约束在用于分析最低度线性递减者时有时必须是非常松散的。特别是,对于各种关于培训实例的自然联合分发,任何有效的一般性约束,仅取决于学习算法的产出、培训实例的数量和信心参数,以及满足一种温和条件(在样本大小上比单体体积弱得多)有时必须是非常松散的 -- -- 当真正的超重风险达到零时,它可以被一个常数约束在下面。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
将门创投
5+阅读 · 2018年7月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月14日
Arxiv
0+阅读 · 2021年3月14日
Semiparametric inference for mixtures of circular data
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
将门创投
5+阅读 · 2018年7月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员