This work explores areas overlapping music, graph theory, and machine learning. An embedding representation of a node, in a weighted undirected graph $\mathcal{G}$, is a representation that captures the meaning of nodes in an embedding space. In this work, 383 Bach chorales were compiled and represented as a graph. Two application cases were investigated in this paper (i) learning node embedding representation using \emph{Continuous Bag of Words (CBOW), skip-gram}, and \emph{node2vec} algorithms, and (ii) learning node labels from neighboring nodes based on a collective classification approach. The results of this exploratory study ascertains many salient features of the graph-based representation approach applicable to music applications.
翻译:这项工作探索了音乐、 图形理论和机器学习的重叠领域。 一个节点的嵌入代表, 以加权的非方向图形 $\ mathcal{G} $, 代表着一个嵌入空间中的节点的含义。 在这项工作中, 汇编了 383 Bach chaorales 并将其作为一个图表。 本文调查了两个应用案例 (一) 学习节点嵌入代表, 使用\ emph{ 连续的文字袋( CBOW) 、 跳格} 和\emph{ node2vec} 算法, 以及 (二) 学习以集体分类方法为基础的邻接节点的节点标签。 本探索研究的结果确定了适用于音乐应用的基于图表的表达方法的许多显著特征 。