Climbing grades are used to classify a climbing route based on its perceived difficulty, and have come to play a central role in the sport of rock climbing. Recently, the first statistically rigorous method for estimating climbing grades from whole-history ascent data was described, based on the dynamic Bradley-Terry model for games between players of time-varying ability. In this paper, we implement inference under the whole-history rating model using Markov chain Monte Carlo and apply the method to a curated data set made up of climbers who climb regularly. We use these data to get an estimate of the model's fundamental scale parameter m, which defines the proportional increase in difficulty associated with an increment of grade. We show that the data conform to assumptions that the climbing grade scale is a logarithmic scale of difficulty, like decibels or stellar magnitude. We estimate that an increment in Ewbank, French and UIAA climbing grade systems corresponds to 2.1, 2.09 and 2.13 times increase in difficulty respectively, assuming a logistic model of probability of success as a function of grade. Whereas we find that the Vermin scale for bouldering (V-grade scale) corresponds to a 3.17 increase in difficulty per grade increment. In addition, we highlight potential connections between the logarithmic properties of climbing grade scales and the psychophysical laws of Weber and Fechner.


翻译:攀爬等级用于根据所察觉的困难对攀爬路线进行分类,并在攀岩运动中发挥核心作用。 最近,根据动态布拉德利-泰瑞模型,根据时间变化能力运动员之间的游戏模式,描述了第一个从全历史升级数据中估算攀升等级的统计严格方法。 在本文中,我们使用Markov链 Monte Carlo对全历史评级模型进行推论,对由定期攀爬的登山者组成的集级数据组采用这一方法。我们使用这些数据来估计模型的基本比例参数 m,该参数界定了与升级有关的难度的成比例增加。我们发现,数据符合这样的假设:攀升等级尺度是困难的对数比例,如调幅或星级。我们估计,Ewbank、法国和UIAAA的攀爬等级系统增加的幅度分别为2.1、2.09和2.13倍,这相当于一个定期攀爬的攀升率的逻辑模型。我们假设一个成功概率的逻辑模型作为等级函数。而我们发现,Vmin级比值的比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值(V级)的比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值增加了了比值,比值比值比值比值比值比值比值比值比值比值比值。

0
下载
关闭预览

相关内容

【普林斯顿-Mengdi Wang】强化学习统计复杂度,35页ppt
专知会员服务
20+阅读 · 2020年11月15日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
14+阅读 · 2020年12月17日
Adversarial Partial Multi-Label Learning
Arxiv
3+阅读 · 2020年6月5日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员