A fundamental principle of individual rational choice is Sen's $\gamma$ axiom, also known as expansion consistency, stating that any alternative chosen from each of two menus must be chosen from the union of the menus. Expansion consistency can also be formulated in the setting of social choice. In voting theory, it states that any candidate chosen from two fields of candidates must be chosen from the combined field of candidates. An important special case of the axiom is binary expansion consistency, which states that any candidate chosen from an initial field of candidates and chosen in a head-to-head match with a new candidate must also be chosen when the new candidate is added to the field, thereby ruling out spoiler effects. In this paper, we study the tension between this weakening of expansion consistency and weakenings of resoluteness, an axiom demanding the choice of a single candidate in any election. As is well known, resoluteness is inconsistent with basic fairness conditions on social choice, namely anonymity and neutrality. Here we prove that even significant weakenings of resoluteness, which are consistent with anonymity and neutrality, are inconsistent with binary expansion consistency. The proofs make use of SAT solving, with the correctness of a SAT encoding formally verified in the Lean Theorem Prover, as well as a strategy for generalizing impossibility theorems obtained for special types of voting methods (namely majoritarian and pairwise voting methods) to impossibility theorems for arbitrary voting methods. This proof strategy may be of independent interest for its potential applicability to other impossibility theorems in social choice.


翻译:个人理性选择的根本原则是Sen的 $\ gamma$ axiom, 也称为扩展的一致性, 指出从两个菜单中从每个菜单中选择的任何替代选择都必须从菜单的组合中选择, 扩大一致性也可以在社会选择的设置中形成。 在投票理论中, 任何从两个候选人领域选择的候选人都必须从候选人的组合中选择。 轴中的一个重要特殊情况是二进制扩展一致性, 也就是说, 任何候选人从候选人的初始领域中选择, 并在与新候选人的头对头的匹配中选择, 都必须在新候选人加入字段时选择任何替代选择, 从而排除破坏效应。 在本文中, 我们研究扩张一致性和坚定性减弱之间的紧张关系。 在任何选举中, 要求从两个候选人的组合中选择单一候选人。 众所周知, 绝对性与社会选择的基本公平性条件不一致, 即匿名性和中立性。 我们在这里证明, 任何独立性的坚定性( 与匿名性和中立性一致的) 也与二进制扩展一致性一致, 从而排除破坏性效果效果效果效果效果效果。 我们研究的是, 将主要选举战略的证明, 以普通选举方法的正确性方法 。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员